Finding Heats of Reaction from Heats of Formation

1) Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide:

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{CaO}
$$

Given that the heat of formation of calcium carbonate is $-1207 \mathrm{~kJ} / \mathrm{mol}$, the heat of formation of carbon dioxide is $-394 \mathrm{~kJ} / \mathrm{mol}$, and the heat of formation of calcium oxide is $-635 \mathrm{~kJ} / \mathrm{mol}$, determine the heat of reaction.
2) Carbon tetrachloride can be formed by reacting chlorine with methane:

$$
\mathrm{CH}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+2 \mathrm{H}_{2}
$$

Given that the heat of formation of methane is $-75 \mathrm{~kJ} / \mathrm{mol}$ and the heat of formation of carbon tetrachloride is $-135 \mathrm{~kJ} / \mathrm{mol}$, determine the heat of reaction.
3) When potassium chloride reacts with oxygen under the right conditions, potassium chlorate is formed:

$$
2 \mathrm{KCl}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{KClO}_{3}
$$

Given that the heat of formation of potassium chloride is $-436 \mathrm{~kJ} / \mathrm{mol}$ and the heat of formation of potassium chlorate is $-391 \mathrm{~kJ} / \mathrm{mol}$, determine the heat of reaction.

Finding Heats of Reaction from Heats of
 Formation - Solutions

1) Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide:

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{CaO}
$$

Given that the heat of formation of calcium carbonate is $-1207 \mathrm{~kJ} / \mathrm{mol}$, the heat of formation of carbon dioxide is $-394 \mathrm{~kJ} / \mathrm{mol}$, and the heat of formation of calcium oxide is $-635 \mathrm{~kJ} / \mathrm{mol}$, determine the heat of reaction.

$$
\begin{gathered}
\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta \mathrm{H}_{\mathrm{f}}(\text { products })-\Delta \mathrm{H}_{\mathrm{f}}(\text { reactants }) \\
\Delta \mathrm{H}_{\mathrm{rxn}}=[1(-394 \mathrm{~kJ} / \mathrm{mol})+1(-635 \mathrm{~kJ} / \mathrm{mol})]-[1(-1207 \mathrm{~kJ} / \mathrm{mol})] \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-1029 \mathrm{~kJ} / \mathrm{mol}+1207 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=+178 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

2) Carbon tetrachloride can be formed by reacting chlorine with methane:

$$
\mathrm{CH}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+2 \mathrm{H}_{2}
$$

Given that the heat of formation of methane is $-75 \mathrm{~kJ} / \mathrm{mol}$ and the heat of formation of carbon tetrachloride is $-135 \mathrm{~kJ} / \mathrm{mol}$, determine the heat of reaction.

$$
\begin{gathered}
\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta \mathrm{H}_{\mathrm{f}}(\text { products })-\Delta \mathrm{H}_{\mathrm{f}}(\text { reactants }) \\
\Delta \mathrm{H}_{\mathrm{rxn}}=[1(-135 \mathrm{~kJ} / \mathrm{mol})]-[1(-75 \mathrm{~kJ} / \mathrm{mol})] \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-135 \mathrm{~kJ} / \mathrm{mol}+75 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-60 . \mathrm{kJ} / \mathrm{mol}
\end{gathered}
$$

3) When potassium chloride reacts with oxygen under the right conditions, potassium chlorate is formed:

$$
2 \mathrm{KCl}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{KClO}_{3}
$$

Given that the heat of formation of potassium chloride is $-436 \mathrm{~kJ} / \mathrm{mol}$ and the heat of formation of potassium chlorate is $-391 \mathrm{~kJ} / \mathrm{mol}$, determine the heat of reaction.

$$
\begin{gathered}
\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta \mathrm{H}_{\mathrm{f}}(\text { products })-\Delta \mathrm{H}_{\mathrm{f}}(\text { reactants }) \\
\Delta \mathrm{H}_{\mathrm{rxn}}=[2(-391 \mathrm{~kJ} / \mathrm{mol})]-[2(-436 \mathrm{~kJ} / \mathrm{mol})] \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-782 \mathrm{~kJ} / \mathrm{mol}+872 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=90 . \mathrm{kJ} / \mathrm{mol}
\end{gathered}
$$

